

Weill Institute for Neurosciences

Department of Neurological Surgery Chang Lab

Brain-to-text technology

Presenters from Dr. Edward Chang's lab at UCSF: David Moses, Margaret Seaton, Jessie Liu, Max Dougherty

CommunicationFIRST Webinar - October 19, 2022

Brain Computer Interfaces (BCIs)

- BCI technology collects neural activity directly from the brain and decodes this activity to commands which allow for control of various devices or the environment
- Communication based BCIs have the potential to
 - Restore movement and communication capabilities to individuals with impaired speech and movement due to a variety of neurological causes
 - Generally improve interactions with technological devices and the environment
 - Meaningfully improve future user independence

Pandarinath et al. (2017)

Our brains act as a control center

"Cortex" means the outer layer of the brain

Motor cortex controls our voluntary movements (moving your arms, moving your mouth to speak)

Our brains act as a control center

"Cortex" means the outer layer of the brain

Motor cortex controls our voluntary movements (moving your arms, **moving**) your mouth to speak)

Work with epilepsy patients has helped us map the part of motor cortex that controls our face

Different areas control slightly different movements

We can use this to predict what a person said out loud

Or to predict it as text on a screen

Extending our work to patients who need the technology

- All of these findings have been with able speakers.
- If a person with LIS tried to speak, would we find similar patterns in the motor cortex?
- If so, can we still use these representations to decode intended messages?

Brain-to-speech technology can help us decode the brain patterns of someone trying to speak, even if their facial muscles can't execute those patterns.

BRAVO: <u>BCI R</u>estoration of <u>Arm and Voice</u>

- Clinical trial jointly led by Edward Chang, MD and Karunesh Ganguly, MD, PhD at UCSF
- Chang Lab goals:
 - Study neural representations of speech in people with paralysis
 - Validate the **safety** and **long-term viability** of our BCI approach
 - **Develop a speech neuroprosthesis** to help these patients communicate

Electrocorticography (ECoG) records electrical activity from the surface of the brain.

Mike Kai Chen for The New York Times

1000 snapshots of the brain captured every second

Many repeats needed for a "clear" picture

Using machine learning to decode intended speech

We detect speech attempts from the neural activity...

...and use natural language modeling to correct improbable phrases.

Isolated words task

Training data collected as Bravo-1 attempted to say individual words

Translating Pancho's brain signals into words

[13]

13.Moses, D. A. et al. Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria. N Engl J Med 385, 217-227 (2021).

Decoding results

Target

Hello how are you? I need my glasses. Please bring my glasses here. Yes. What do you do? It is comfortable. My family is here.

Decoding results

Target

Hello how are you? I need my glasses. Please bring my glasses here. Yes. What do you do? It is comfortable. My family is here.

Without LM

You am are you I need my thirsty Please please my glasses good Yes What do you do Is it comfortable My family is here

With LM

Hello how are you I need my glasses Please bring my glasses here Yes What do you do It is comfortable My family is good

Overall: ~75% accuracy at 15 words per minute

Chang Lab

How do we go beyond 50 words

- There's a natural way to scale up to tons of words, one that's already being used in existing assistive technology: Spelling
- But, we wanted to try spelling with a twist:
 - Just like how single letters might get lost due to noise over a phone line or in a loud environment, it might be hard to identify single letters in brain signals.
 - So, we had Pancho use the NATO alphabet instead!

How do we go beyond 50 words

- There's a natural way to scale up to tons of words, one that's already being used in existing assistive technology: Spelling
- But, we wanted to try spelling with a twist:
 - Just like how single letters might get lost due to noise over a phone line or in a loud environment, it might be hard to identify single letters in brain signals.
 - So, we had Pancho use the NATO alphabet instead!

A	B	C	D	E
Alpha	Bravo	Charlie	Delta	Echo
F	G	H	 	J
Foxtrot	Golf	Hotel	India	Juliette
K	L	M	N	O
Kilo	Lima	Mike N	ovembe	er Oscar
Papa		Romeo	S	T
Uniform	Victor	Whisky	X-ray	Y Yankee
		Z Zulu		

Pancho using our system to spell

Only neural decoding

Idonotwantthat Thankytu Yeucanyaythatagain Tellmeaboutyoulfamily Fonftoothatagajn Ithinkthiyibpreteygrod Easyfomwvutrsle Weaavetobtop Youraiigittobekvvding

Spelling results

Only neural decoding

Idonotwantthat Thankytu Yeucanyaythatagain Tellmeaboutyoulfamily Fonftoothatagajn Ithinkthiyibpreteygrod Easyfomwvutrsle Weaavetobtop Youraiigittobekvvding

+ LM (Real-time results)

I do not want that Thank you You can say that again Tell me about your family Do not do that again I think this is pretty good Easy for you to say We have to stop You have got to be kidding

Overall: ~90% accuracy at 6 words per minute, with over 1,000 possible words in the vocabulary!

Next steps

Generalizability We want to show that our approach can work for many languages, not just English!

Expressivity

We want to go from brain signals straight to a synthetic voice so that users can express themselves more than they could with just text!

Hardware design

Neural-implant hardware is constantly improving; we want to use the best hardware we can!

Validation

We want to make sure this technology can work for many people, not just Pancho!

